Math 131B-1: Homework 4

Due: February 3, 2014

- 1. Read Apostol Sections 4.8-9, 4.11-13, 4.15-17, 4.19-20. [Most of these are short.]
- 2. Do problems 4.21, 4.25, 4.28, 4.33, 4.38, 4.39 in Apostol.
- 3. We say that a subset S of a metric space M is *dense* if every open set in M contains a point of S.
 - Prove that if S is dense in M, every point of M is the limit of a sequence of points in S.
 - Prove that if $f: (M, d_M) \to (T, d_T)$ and $g: (M, d_M) \to (T, d_T)$ are two continuous functions from M to a metric space (T, d_T) , and f(s) = g(s) for all $s \in S$, then f = g on M.
- 4. Let $f : X \to \mathbb{R}^n$ be a function such that $f(x) = (f_1(x), \dots, f_n(x))$. Show that f is continuous if and only if each function $f_i : X \to \mathbb{R}$ is continuous.